Analyse multivariée approfondie
Description
Méthodes d’analyse exploratoire et confirmatoire :
- Analyse factorielle exploratoire et confirmatoire
- Codage optimal
- Positionnement Multidimensionnel
- Classification non supervisée et modèles de mélanges
Méthodes prédictives :
Méthodes de régression
- Estimation des paramètres par ré-échantillonnage (Bootstrap, Jackknife)
- Multicolinéarité et stabilité des estimations
- Complexité du modèle, trade-off biais-variance et précision des prédictions
- Méthodes de sélection des variables (Best subset regression, méthodes pas à pas)
- Méthodes de régularisation par composantes : Régression sur Composantes Principales, Régression PLS
- Méthodes de régularisation par contraintes : Régression Ridge, LASSO, Elastic Net
- Sélection de modèle par procédures d'apprentissage statistique
- Régression robuste
- Régression non paramétrique
Méthodes de classification supervisée
- Régression logistique binaire
- Régression Logistique multinomiale et ordinale
- Analyse factorielle discriminante
- Discrimination sur variables qualitatives
- Analyse discriminante probabiliste Linéaire et Quadratique
- Approche non paramétrique : Méthode des noyaux, Méthode des k plus proches voisins
Traitement des données manquantes
Finalité
Approfondir les méthodes statistiques d'analyse exploratoire, de régression et de classification
Description des modalités d'évaluation
Le travail consistera à rédiger un rapport qui sera présenté et discuté lors d’une soutenance orale. L'étudiant pourra choisir entre deux types de projets : une étude de cas ou une synthèse d’articles.
Public
Etre inscrit en M2 du master Statistique MR123 (ancien MR085) ou du master Actuariat MR126000A (ancien MR088) ou être agréé (niveau requis STA101 et STA102) .
Pour obtenir l'agrément, les auditeurs adresseront par courrier électronique à l'enseignant responsable, Mme Niang (ndeye.niang_keita@cnam.fr ) un CV détaillé et une lettre de motivation indiquant les raisons de la demande et le projet pédagogique dans lequel elle s'inscrit.
- Nombre d’ECTS
- 9
- Durée en nombre d'heures
- 90.00
- Type de notation
- Notation chiffrée (sur 20)
- Moyenne pour valider l'UE
- 10.00
- Modalité(s) d'évaluation
- Projet(s)
- Année de création
- 2017
- Date de début de validité
- Date de fin de validité
- Déployabilité
- Offre déployable dans le réseau en cas d'agrément
- Examen national
- Oui
- Master Droit économie et gestion, mention actuariat
- Master Sciences, technologies, santé mention Informatique parcours Systèmes d'information et business intelligence HTT
- Master Sciences, technologies, santé, mention mathématiques appliquées, statistique parcours Science des données
- Master Sciences, technologies, santé, mention mathématiques appliquées, statistique parcours Statistique du risque pour la finance et l'assurance
Cette unité fait partie du/des bloc(s) de compétences suivant(s).