Analyse numérique matricielle et optimisation (1)
Description
Notions algorithmiques
Initiation à la structuration et la complexité
Résolution de systèmes linéaires
Notion de conditionnement numérique, méthodes directes de résolution des systèmes linéaires, méthodes itératives pour les systèmes linéaires.
Calcul des valeurs propres et des vecteurs propres des matrices
Méthodes globales, méthodes sélectives.
Optimisation quadratique
Méthodes de gradient (simple, gradient à pas optimal, gradient conjugué). Prise en compte des contraintes.
Finalité
Familiariser les auditeurs avec les techniques d'analyse numérique et les outils logiciels du calcul scientifique.
Les travaux pratiques seront faits en Python grâce à interface Jupyter du Cnam.
Lorsque l'UE est ouverte en FOAD (formation à distance), un regroupement hebdomadaire en visio-conférence est inclus dans la formation.
Compétences visées
Initier les élèves aux techniques modernes de la modélisation numérique pour les sciences de l'ingénieur.
Description des modalités d'évaluation
Projet final
Public
- Avoir obligatoirement suivi des cours d'analyse et d'algèbre linéaire de Cycle Licence (L1-L2) (typiquement UE MVA101 ou MVA006).
- Avoir des rudiments en programmation (maîtrise des notions essentielles de programmation et/ou d’algorithmique)
- Nombre d’ECTS
- 6
- Durée en nombre d'heures
- 60.00
- Type de notation
- Notation chiffrée (sur 20)
- Moyenne pour valider l'UE
- 10.00
- Modalité(s) d'évaluation
- Projet(s)
- Année de création
- 2017
- Date de début de validité
- Date de fin de validité
- Déployabilité
- Offre déployable dans le réseau en cas d'agrément
- Examen national
- Oui
Cette unité fait partie du/des bloc(s) de compétences suivant(s).