
La formation dès aujourd'hui, et tout au long de la vie.

DIPLÔME

Diplôme d'ingénieur spécialité Science de la donnée et intelligence artificielle parcours Big data et intelligence artificielle en apprentissage

Code: ING7601A

Niveau d'entrée : Bac + 2 Niveau de sortie : Bac + 5

ECTS: 180

Diplôme national

Oui

Déployabilité

Apprentissage: Fomation pouvant se suivre en

apprentissage

Objectifs pédagogiques

La formation vise à acquérir d'une part, des compétences transversales aux métiers d'ingénieur et d'autre part des compétences spécifiques aux techniques du Big Data et de l'IA. Les compétences envisagées d'une manière large permettent à l'ingénieur une mobilité professionnelle.. Avec sa coloration Industrie 4.0, cette formation permettra aux diplômés de contribuer au développement de la stratégie numérique de l'entreprise et d'en devenir les responsables à moyen terme. Leur rôle sera de créer des algorithmes d'aide à la décision afin d'optimiser les solutions proposées :

- Dans les différentes phases du cycle de vie d'un produit (conception, fabrication, production, contrôle qualité, distribution, maintenance, recyclage).
- Dans la conception d'interfaces homme-machine via la réalité mixte pour l'assistance à la maintenance, l'apprentissage, l'ergonomie du poste de travail, la performance qualité, la restitution de systèmes

En outre, les apprenti (e) s ingénieur (e) s seront formé (e) s à:

- Adopter une démarche d'innovation, conduire et gérer les changements, les évolutions, tenir une veille, adopter l'esprit d'entreprendre.
- Conduire des réunions, développer les compétences, faire respecter les règles, communiquer à l'internationale.

- Appliquer une démarche méthodologique de la gestion de projet.
- Savoir mettre en œuvre les principes de la gestion budgétaire.
- Savoir prendre en compte les aspects juridiques, maîtriser la sécurité de l'information, assurer la maîtrise d'ouvrage d'un système d'information.
- Assumer la responsabilité économique, environnementale et sociale de l'entreprise.
- Assurer une fonction d'expertise scientifique et technique en lien avec sa spécialité.

Méthodes et moyens:

Les enseignements théoriques, couplés à des mises en application en TD et TP sur matériels et logiciels métiers permettront une professionnalisation rapide. L'espace numérique de formation du Cnam (Moodle) permet à chaque enseignant de rendre accessible des ressources spécifiques à ses enseignements.

Equipements mutualisés dans le cadre de partenariats :

Puissance du calcul industriel mutualisé avec les laboratoires de recherche (dont le laboratoire LISPEN de l'ENSAM).

- -Technologies additives, technologies de soudage, environnement numérique et IA du pôle de formation UIMM 21-71 (Pôle d'excellence Industrie 4.0).
- Stockage de data massives industrielles en local (edge computing) ou sur le cloud (cloud computing) avec accès ciblé et restreint selon la définition du besoin (partenaires industriels de la formation).

Compétences et débouchés

Compétences générales d'un(e) ingénieur(e) :

• Connaissances scientifiques, compétences techniques, curiosité et rigueur.

Compétences spécifiques :

- Techniques de collecte, traitement et fouilles de données dans le but de pouvoir analyser des données complexes et de grande dimension.
- Langages et logiciels de statistiques et de mathématiques appliquées.
- Communication des résultats d'analyses statistiques.
- Techniques concernant les nouvelles technologies des Systèmes NoSQL, de distribution de données, de recherche d'informations.
- Problématiques de représentations de connaissance, de résolution de problèmes et de modélisation des agents (IA).
- Algorithmes de prédiction avec des applications pour la représentation, classification, visualisation, compression.
- Problématiques de la gestion de l'information orientée vers l'intégration de ressources documentaires.
- Outils d'apprentissage dans le contexte actuel du big data : grandes masses de données, données / labels bruités, données manquantes.
- Outils analytiques tels que SAS ou R
- Utilisation de langages informatiques (C++, R, Python,...), outils pour le deep learning (PyTorch, Keras, Tensorflow, ...)

Méthodes pédagogiques

Les enseignements théoriques, couplés à des mises en application en travaux dirigés et travaux pratiques sur matériels et logiciels métiers permettront une professionnalisation rapide. L'espace numérique de formation du Cnam (Moodle) permet à chaque enseignant de rendre accessible des ressources spécifiques à ses enseignements. Des modalités plus détaillées seront communiquées au début de chaque cours.

Modalités de validation

- Valider l'entrée à l'EiCnam (Ecole d'ingénieur(e)s Cnam).
- Avoir acquis les UE demandées en prérequis (ou en être dispensé).
- La validation d'un niveau d'anglais B2 est nécessaire.
- Séquences professionnelles évaluées à travers des projets en entreprise.
- Valider le mémoire d'ingénieur

Prérequis et conditions d'accès

- Prérequis pour le cycle préparatoire : BAC+2 scientifique et des connaissances en mathématiques affirmées (principalement issus des filières CPGE, Licence (Informatique), BUT (GEII, GIM, GLT, GMP, Informatique, MP, MLT, STID, SGM) et BTS (SIO, SN).
- Procédures de l'Ecole d'Ingénieur(e)s du Cnam : tests, dossier et entretien.

Mentions officielles

Code RNCP

39541

Date de l'échéance de l'enregistrement au RNCP

31/08/2026

Mots-clés

big data

Intelligence artificielle

Informations complémentaires

Type de diplôme

Ingénieur CNAM

Formacode

Intelligence artificielle [31028] Télécommunication [24254]

Code du parcours

ING7601

Modules d'enseignement

S₁

- → Humanités et sciences sociales 1
- → <u>Sciences ingénieur : notions fondamentales et</u> → <u>Spécialité Informatique 1</u> outils pour Industrie 4.0 - 1
- → <u>Séquence professionnelle S1</u>

S₂

- → <u>Humanités et sciences sociales 2</u>
- → Mathématiques 1

→ <u>Sciences ingénieur : notions fondamentales et</u> outils pour Industrie 4.0 - 2

→ Séquence professionnelle S2

→ Spécialité Informatique - 2

S3

- → Mathématiques 2
- → <u>Sciences ingénieur : notions fondamentales et</u> → <u>Spécialité Informatique 3</u> outils pour Industrie 4.0 - 3
- → <u>Séquence professionnelle S3</u>

S4

- → <u>Humanités et sciences sociales 3</u>
- → <u>Sciences ingénieur : notions fondamentales et</u> → <u>Séquence professionnelle S4</u> outils pour Industrie 4.0 - 4
- → Séquence à l'International

S5

- → <u>Humanités et sciences sociales 4</u>
- → Mathématiques 3
- → Sciences ingénieur : notions fondamentales et outils pour Industrie 4.0 - 5
- → Sciences ingénieur : notions fondamentales et outils pour Industrie 4.0 - 6
- → Spécialité Informatique 4

S6

→ <u>Séquence professionnelle S6 : Mémoire fin</u> études projet entreprise

Blocs de compétences

Un bloc de compétences est constitué d'un ensemble d'Unités qui répond aux besoins en formation de l'intitulé du bloc.

Les unités ci-dessus sont réparties dans les Blocs de compétences ci-dessous.

Chaque bloc de compétences peut être validé séparément.

Information non disponible, pour plus d'information veuillez contacter le Cnam